Home Page   |   Site Map   |   Contact
Path :  www.lphg.ch Ph.D. { Web Version } Appendix { Appendix D } D.2
Previous  |  Next
CV
Table of Contents
{ Abstract / Résumé }
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
{ Appendix A }
{ Appendix B }
{ Appendix C }
D.1 : Fourier Transforms
Ph.D.  /  { Web Version }  /  Appendix  /  { Appendix D }  /  D.2 : Gaussian Function
MBI
Physics Diploma
Photos
Post-Doc
Other parts
{ Appendix E }
D.3.1 : Matlab FFT and Gaussian example (Theory)
D.3.2 : Matlab FFT and Gaussian example (Example)
D.4 : References

D.2     Gaussian Function

D.2.1      Definition

The Gaussian function Gaus is defined as


(D-5)


This function centered at x0 has a height of unity and its area is equal to |b|.

D.2.2     Properties

Gaussian functions are often used for distributions like spectral density of a light beam. In this case, an important parameter is the distribution bandwidth found at mid-height DxFWHM, where FWHM means full width at half maximum. It is interesting to connect this value of DxFWHM with the Gaussian parameters b and x0 and to find the corresponding points x1,2 where the Gaussian is 0.5 (half the maximum)


(D-6)



(D-7)


The Fourier transform of a Gaussian is also a Gaussian


(D-8)



(D-9)


where (D-9) is a consequence of equations (D-3) and (D-4). The Fourier transform is complex with a maximum amplitude of |b| at x=0. The position x1,2 where the Fourier transform amplitude reach the half of its maximum and the FWHM DxFWHM are given by


(D-10)



(D-11)




Top   |   JavaScript
Path :  www.lphg.ch Ph.D. { Web Version } Appendix { Appendix D } D.2
Previous  |  Next